Project Icon

YOLOv5-Lite

Optimized YOLOv5-Lightweight Model for Enhanced Edge Device Performance

Product DescriptionYOLOv5-Lite delivers a streamlined and optimized version of YOLOv5, focusing on reduced computational requirements and accelerated inference times. Ideal for edge devices, it incorporates ablation experiments that result in decreased memory usage and fewer parameters. Key improvements include channel shuffling and an updated YOLOv5 head, maintaining at least 10 FPS on devices such as Raspberry Pi. By removing the Focus layer and refining model quantization, deployment becomes more accessible. Comparative analyses reveal superior inference speed and model efficiency across multiple platforms, making it an effective choice for resource-constrained environments.
Project Details