Project Icon

Recommendation-Systems-without-Explicit-ID-Features-A-Literature-Review

Trends and Analysis of Recommender Systems with Foundational Models

Product DescriptionThis literature review examines the development of recommender systems with a focus on foundational models that do not rely on explicit ID features. It discusses the potential for these systems to evolve independently, akin to foundational models in natural language processing and computer vision, and the ongoing debate regarding the necessity of ID embeddings. The review further explores how Large Language Models (LLMs) may transform recommender systems by shifting focus from matching to generative paradigms. Additionally, it highlights advancements in multimodal and transferable recommender systems, offering insights from empirical research into universal user representation. This review serves as a comprehensive guide to understanding current trends and future directions in the field of recommender systems.
Project Details